JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN HUMANITIES AND SOCIAL SCIENCES

F/OSS PROJECTS: A BRIDGE BETWEEN THE INDUSTRY AND THE ACADEMIA
R. K. PANDEY
University Institute of Computer Science and Applications (UICSA)
R. D. University, Jabalpur (M.P.) INDIA
rkpandey18@rediffmail.com

ABSTRACT: One of the frequently cited challenging issues in the software engineering education has been the gap between the industry and the academia. Many schemes/solutions have been proposed to deal with this issue. Software engineering perhaps is the only branch of engineering where the entire product can be designed, developed and delivered online. As such there exists opportunities for delivering SE education online in a more creative, effective and productive manner than in any other branch of engineering. It is here that Free and Open Source Software (F/OSS) or similar resources available on the Internet can play a very significant and crucial role in filling this gap between the industrial and academic environment. Free and Open Source Software (F/OSS) development not only exemplifies a viable software development approach, but also a model for providing software engineering education in a more realistic manner. F/OSS is now widely recognized both an alternative teaching methodology and an educational model. Many universities world over have included F/OSS development as a course in their curriculum. Projects have been launched to study the transfer of F/OSS practices to the production of educational resources. In this paper we try to find the answer to the question can F/OSS projects serve as a bridge to fill the gap between the industry and the academia? If Yes, then How?

Keywords: Software Engineering (SE), Free/Open Source Software (F/OSS), Software Engineering education (SEE), Open Source Software Engineering (OSSE).

1. INTRODUCTION

One of the challenges in teaching software engineering which has been widely recognized is the gap between the industry and the academia. Free and Open Source Software (F/OSS) development not only exemplifies a viable software development approach, but also a model for the creation of self-learning [1] and self-organising communities. Enabled by the Internet, geographically distributed individuals voluntarily contribute to a project by means of the Bazaar model [2]. Extensive peer collaboration allows participants to write code, debug, test and integrate software. The model has produced a number of successful applications in the area of opera ting systems (Linux), emailing and web services (Gmail, Apache), databases (MySQL, PostgreSQL) etc. Communities in various projects provide support services such as suggestions for product features, act as distributing organs, answer queries, and help new members having problems with the software. Research evidences suggest that the communities in various F/OSS projects provide free help or ‘user-to-user’ assistance [3] and problem solving for participants. Such communities are also focus on learning and the sharing of knowledge [4]. In recent times, F/OSS is making inroads not only in business and software industries but in colleges and universities as well. There is increased interest in the F/OSS learning environment [1] and in F/OSS projects as bazaars of learning [5]. F/OSS has now become an alternative teaching methodology and an educational model [6]. Computer science students can be involved in meaningful software development activities and get experience in dealing with realistic software systems with large quantities of code written by other people [7]. Many universities have also started teaching F/OSS courses [8] [9]. Projects (e.g. Edukalibre) have been launched to study the transfer of F/OSS practices to the production of educational resources [10]. Another European Union funded project, FLOSSCom studies how the principles of F/OSS communities can be used to improve ICT supported formal education. Workshops (e.g. tOSSad) have also started discussing the adoption of F/OSS in education [9]. These studies show that pedagogically software engineering educators may utilize F/OSS to extend the methodology by which we learn, apply, and teach software engineering courses.
This paper is organized nine sections which are as follows. Section two discusses the issues relating to the design of software engineering curriculum, section three describes the goals of software engineering education section four throws light on the significance of the interaction with the industry and the institution. Section five discusses the factors responsible for causing gap between the industry and the academia. Section six describes what industry expects from a fresh software engineering graduate, section seven discusses the role F/OSS projects can play in the delivery process of software engineering education. finally conclusions are presented in section eight and section nine discusses the future directions.
2. DESIGNING SOFTWARE ENGINEERING CURRICULUM
As the complexity of the software system grows, the attention of the international academia has been drawn on the issues of software engineering education, training and hence efforts have been made to draft curriculum orienting the software engineering students to meet the challenges of the future. For example the members of the Software Engineering Institute (SEI) also known as Working Group on Software Engineering Education (WGSEET) have contributed to the effort of defining a body of knowledge for software engineering education [14, 15]. They have made available curriculum modules and support materials on the SEI web site. Similarly under the aegis of IEEE Computer Society and Association for Computing Machinery (ACM) a joint task force was constituted on computing curricula and its report is available as SE 2004 (Software Engineering 2004) [16].
3. WHAT ARE THE GOALS OF SOFTWARE ENGINEERING EDUCATION?
Chapter 3 of SE 2004 [16] lists the capabilities that an undergraduate software engineering student must posses after completion of the course which are listed below.

Graduate of an undergraduate software engineering program must be able to,

3.1 Show mastery of the software engineering knowledge and skill, and professional issues necessary to begin practice as a software engineer.

Students through regular reinforcement and practice, need to gain confidence in their abilities as they progress through software engineering program of study. In most instances knowledge as well as skills, is acquired through a staged approach with different levels being achieved as each academic term progresses. In addition graduates need to gain an understanding and appreciation of professional issues related to ethics and professional conduct, economics, and the social needs,

3.2 Work as an individual and as part of team to develop and deliver quality software artifacts

Students need to complete tasks that involve work as an individual, but also many other tasks that entail working with a group of individuals. For group work, students ought to be informed of the nature of groups and of group activities/roles as explicitly as possible. This must include an emphasis on the importance of such matters as a disciplined approach, the need to adhere to deadlines, communication, and individual as well as team performance evaluations.

3.3 Reconcile conflicting project objectives, finding acceptable compromises within limitations of cost, time, knowledge, existing systems, and organisations.

Students should engage in exercises that expose them to conflicting, and even changing requirements. There should be a strong element of the real world present in such cases to ensure that the experience is realistic. Curriculum units should address these issues, with the aim of ensuring high quality requirements and a feasible software design.

3.4 Design appropriate solutions in one or more application domains using software engineering approaches that integrate ethical, social legal and economic concerns.

Throughout their study, students need to be exposed to a variety of appropriate approaches to engineering design in the general sense, and to specific problem solving in various kinds of applications domains of software. They need to be able to understand the strengths and the weaknesses of the various options available and the implications of the selection of appropriate approaches for a given situation. Their proposed design solutions must be made within the context of ethical, social, legal, security, and economic concerns.

3.5 Demonstrate an understanding of and apply current theories, models, and techniques that provide a basis for problem identification and analysis, software design, development, implementation, verification, and documentation.

The presence of the Capstone project, an important final activity at the end of a software engineering program of study, is of considerable importance in this regard. It offers students the opportunity to tackle a major project and demonstrate their ability to bring together topics from a variety of courses and apply them effectively. This mechanism allows students to demonstrate their appreciation of the broad range of software engineering topics and their ability to apply their skills to genuine effect. This should also include the ability to offer reflections on their achievements.

3.6 Demonstrate an understanding and appreciation for the importance of negotiation, effective work habits, leadership, and good communication with stakeholders in a typical software development environment.

It is important to have within a program of study at least one major activity that involves having to produce a solution for a client. Software engineers must take the view that they have to produce software that is of genuine utility. Where possible, we should integrate within the program a period of industrial experience, as well as invited lectures from practicing software engineers, and even involvement in such matters as external software competitions. All this provides a richer experience and helps to create an environment that is supportive of the production of high quality software engineering graduates.

3.7 Learn new models, techniques, and technologies as they emerge and appreciate the necessity of such continuing professional development.

By the time they come to the end of their program of study, students should be showing evidence of being a self-motivated life-long learner. Such a situation is achieved through a series of stages inserted at various places of a program of study. In later academic years, such as at the capstone stage, students should be ready and willing to learn new ideas. But again, students need to be exposed to best practices in this regard at earlier stages.

4. SIGNIFICANCE OF DIALOGUE WITH THE INDUSTRY IN SE.
In order to make the software engineering education more realistic and industry-oriented students must be given some exposure to the real-life problems while pursuing studies. Software engineering courses have to be designed so that they prepare the students to deal with the issues which they are likely to face, while in the field. The studies [12] have revealed this gap which is caused by what student learns at the institution and what is expected of him/her as a software professional in the field. A close interaction with the industry will narrow down this gap by enabling the students to understand and learn the real-life issues which he/she is likely to face once out in the field.
5. FACTORS CAUSING GAP BETWEEN THE INDUSTRY AND THE ACADEMIA.
The factors causing gap between the industry and the academia can be broadly summarized as follows.

· Improper curriculum design
· Lack of Industrial exposure
The issue of improper curriculum design can be addressed by adhering to the guidelines laid down in the IEEE CS and ACM report SE 2004 [16]. Later we will show in this paper how F/OSS projects can help a budding software engineer to learn professional tips as laid down in IEE CS and ACM report SE 2004. Industrial exposure is the most critical issue to be properly addressed to produce the quality software engineer meeting the industry requirements. It is the industrial exposure which introduces the student with the real life problems that a software engineer faces while in the field. It is here where F/OSS projects can provide a platform for the budding software engineering professionals to learn to deal with the real life issues.
6. WHAT INDUSTRY EXPECTS?
The topic of educating software engineers from an industry point of view is addressed in [13]. The main skills that industry requires from new hired persons are as follows.
· Team work

· Testing and evaluating capabilities,

· Effective communication skills

· Quality measurement

· Process improvement
Another study carried out by [12] identifies the following topics of industrial importance.

· Requirements gathering

· Object-Oriented Analysis and Design

· Configuration Management

· Testing and Quality Assurance

· Process Standards

· Maintenance and reengineering

· Project Management

· User Interfaces and Human Computer Interaction
The experience of software professionals usually provides a complementary view to the issues and problems of the real world to that often offered in an institution. Professionals certainly bring a different perspective than the teachers and allow the students to realize the importance of a number of issues that they may not fully appreciate. The students are usually more interested in the technical ones, and often view managerial and organizational aspects as marginal. Software professionals may be far more convincing for the students because they bring real-life experiences with all the relevant pieces of information, technical and organizational. They can explain the rationale behind decisions, which may have been based on several factors in addition to and beyond merely technical ones. The students are usually very receptive and eager to here what a representative of the real world teaches [21].
7. THE ROLE OF F/OSS RESOURCES IN SE EDUCATION
In the present scenario of software development, a good software engineer is supposed to possess not just good technical skills but good communication skills are also considered to be an essential ingredient in one's skill set. Therefore the goal of the software engineering education should be to provide good technical as well as good communication skills. F/OSS projects can play a very effective and crucial role in meeting the abovementioned objectives of SEE. Students can browse and explore an open source project code base, to assess the coding conventions and styles, assess the quality of design by using software metrics tool, applying reverse engineering techniques to synthesize higher abstractions, and performing refactoring and assessing the impact of proposed changes to the code base[20]. As such the students can learn a lot about software engineering practices from F/OSS projects. For the sake of convenience we divide these skills broadly in two categories e.g. technical skills, and communication skills.
7.1 Technical Skills
· Software Design
· Coding conventions and styles

· Reverse engineering

· Understanding software measurements

· Software Testing

· Configuration management
· Software maintenance

· Project management

· Software engineering processes
7.2 Communication Skills/Social Skills
7.3 Legal Skills
7.1.1 Software Design
Software Design Documents, such as software architecture documents and detailed designs are hard to find in F/OSS projects as F/OSS projects rely heavily on code as a means of documenting software architecture at various levels. As such students may be asked to prepare an architecture or detailed design documents using appropriate reverse engineering tools etc. They may produce high level block designs and UML diagrams for the architecture. They can also be asked to make an interaction with the community and inform them about your initiative and can get more useful guidance from the community. This way they will not only learn but can contribute to the project as well.
7.1.2 Coding Conventions and Styles.

Just as reading others good writing can be used as basis to learn and improve ones writing habits, similarly examining the code written by professionals can give a good exposure to an aspiring software engineer. Coding conventions and styles contribute to readability and maintainability of an application. Source code browsing can help the students in learning good programming styles and practices which make the code understandable and intent-revealing by adopting practices while coining the names of identifiers, variables, methods etc. The most obvious way to gain as a professional from open source is by fixing and improving existing open source code. By joining an existing open source software project one can practice the art of maintaining other people's code and sharpen one's skills. Similarly refactoring is an on-going activity during the software development and is done anytime when new functionality is added, defects are fixed, code is reviewed, and bad code smells are detected [19]. The goal of refactoring is to improve the design or internal structure, make it easier to understand and easier to modify. Eclipse IDE provides good support for refactoring. Students can gain experience by browsing the source code repositories of the open source projects. The FLOSSPOLS Developer Survey [28] also establishes this fact as shown in Table-1 quite significant percentage of F/OSS members are really benefited by joining F/OSS projects in learning new skills, enhancing their skills, learning new programming languages/technologies etc.

	Skills learned in FLOSS
	I learned a lot

	To re-use code written by others
	48,0

	Basic/introductory programming skills
	47,7

	To run and maintain complex software systems
	47,1

	To write code in a way that it can be re-used
	46,0

	To become familiar with different programming languages
	44,3

	To get an overview of developments in software technology
	44,3

	To design modular code
	35,5

	To get an overview of the skills you need in the software professions
	33,2

	To document code
	22,4

	To create new algorithms
	12,4

Table-1
(n=1453) Source: FLOSSPOLS Developer Survey 2005
(Multiple responses ordered by shares (%) of respondents)
7.1.3 Reverse Engineering
Reverse engineering process enables a software engineer to create are presentations of the system at a higher level of abstraction [18]. This activity becomes of great significance under conditions when the only artifacts available of a software system is the source code while carrying out maintenance tasks. Reverse engineering allows the software engineer to obtain and synthesize higher level abstractions from the source code thereby making the task of software maintenance easier. Students while exploring the source code can make use of a reverse engineering tool to prepare the design documents.
7.1.4 Understanding Software Measurements

Software metrics provide support for planning, controlling and evaluating the software processes and software products. Software product metrics can be automatically computed using Eclipse plug-ins. Metrics are considered to be at the heart of producing high quality, highly maintainable software products. Metrics 1.3.6 [24] plug-in tool also calculates various size and logic complexity metrics, and object-oriented metrics such as proposed in [26]. Eclipse Metrics 3.3.1 plug-in tool [25] computes various metrics such as LOC, McCabe's Cyclomatic complexity etc. This kind of assignments may help the students in understanding and learning the significance of the software quantitative measurements of the various attributes of the software.
7.1.5 Software Testing

Considerable scope exists for students learning software testing tips from the open source software developments projects. The students can be motivated to choose an active and a non-stable F/OSS project/release of their own choice and can be asked to participate in it as tester. Some experiments of this nature have been conducted in [22][23]. Students can perform activities such as bug detection, reporting, bug removal and prepare a report on their activities. This view is also supported as shown in Table-2 in the results of FLOSSPOLS Developer Survey [28]. The impact of bug-fixing on learning process is reflected in the statement of [28] "A surprisingly large share of those who have experienced formal courses rate it poorly as a form of learning in comparison with the more interactive forms of learning in the F/OSS community such as "fixing bugs" ".
	Ways to learn
	percentage saying this is a very useful way to learn

	Fix bugs
	59,1

	Other self-study
	58,4

	Reading source code of programs and patches
	55,8

	Reading other developers' feedback to my patches/bug-reports/bug-fixes
	51,8

	Checking programs for errors and their causes
	48,3

	Reading books or articles on programming
	46,0

	Participate in the discussions within the FLOSS community
	45,2

Table-2
(n=1453) Source: FLOSSPOLS Developer Survey 2005
(Multiple responses ordered by shares (%) of respondents
7.1.6 Configuration Management

Software configuration management deals with the issues that arise while managing the successive versions of software artifacts as they become available during the F/OSS development cycle. Though it may not be possible to engage the students directly in configuration management activities as this activity is restricted to the coordinators of F/OSS projects. Still there is sufficient scope for the students to understand and learn real life software configuration management issues and practices followed in the industry and F/OSS projects by exploring the F/OSS project repositories.
7.1.7 Software Maintenance.

Majority of the costs involved in a software system account for the maintenance and evolution. As a consequence, SEE needs to address carefully software maintenance and evolution in order to enable the software engineering students to face the challenges in the field. Software maintenance involves tasks, like correcting errors, correcting design flaws, interface with the system, make enhancements, make necessary changes in the system, make changes in files or databases, improve the design, converting programs so that different hardware, software systems features, and telecommunication facilities can be used. F/OSS projects can be viewed as maintenance projects right from the very beginning. F/OSS community typically develops and maintains the core of system proposed by one or more individuals. As such, from the point of learning F/OSS projects are highly suitable for practicing software maintenance tasks as described above. Further maintenance topics in the form of assignments may also be practiced for conducting impact analysis and change propagation reporting, and performing refactoring in the identified areas in the code of the target release.
7.1.8 Project Management.

Software project management is concerned with dealing, planning and controlling of the project. The purpose of the project planning is to identify the scope of the project, estimate the work involved, and create a project schedule. Project planning begins with the requirement that specifies the software to be developed. The project plan is then developed to describe the tasks that will lead to successful completion of the project. As discussed above F/OSS provides little opportunity for the students. Also there are fundamental difference in the project management processes in the closed and open source software development environment. for example in the closed source development meeting a deadline is a very critical criterion which control the project management activities, which may not be applicable in an open source project. While many of the activities like planning and scheduling of activities, selecting and deploying resources, monitoring project evolution, and taking decisions are present in F/OSS projects and they are controlled and exercised by the project coordinators.
7.1.9 Software Engineering Processes

Though it is not reasonable for students to acquire experience on process models such as waterfall, the spiral model, iterative enhancements model or Rational Unified Process (RUP) as such processes are not practiced in F/OSS projects. However software development practices like issue tracking, version control, unit testing, style guidelines, the daily build, code reviews, release engineering, and traceability etc. may be of concern and interest even for a beginner. Thus by observing how things actually work in a large project one can become a better manager apart from polishing one's coding skills.
7.2.1 Communication Skills/Social Skills
Communication skills/social skills are also considered to be an integral part in the skills set of a software engineer. By participating in an open source project one can also perfect non-verbal communication skills. Open source projects, being globally distributed, typically rely on a multitude of collaboration tools ranging from email and instant messaging to issue management databases, wikis, and version control systems. Communicating requirements, design and implementation options and bug descriptions through these media in a precise and technically–objective manner is an important skill in today's global marketplace, and one can surely sharpen through exchanges with fellow open source developers [27]. Social interactions have been found as the means of getting new information [29] [30] [33]. The communication networks may be used for learning how to do one's job [30], manage expertise or specialized skills and knowledge [31] and acquire new information [33]. Software development teams need to manage their skills and knowledge effectively through coordination [31]. In the context of software development Kraut and Streeter [34] argue that effective communication can lead to better knowledge sharing and hence reduce cost overruns, software unresponsiveness, software unreliability, and expensive modification costs. The communication networks in F/OSS projects allow developers to share their experiences or knowledge. This knowledge sharing could be about variety of issues such as code development, bugs, feature requests, and patch management etc. A developer may seek help over the forum or help resolve others' problems. Applying his efforts or knowledge to different but related problems domains may help a developer in developing a deeper cognitive understanding of both [32][35]. Lakhani and Hippel [3] found that 98% of the effort expended by information providers in fact returns direct learning benefits to those providers on Apache field support systems. Therefore, participation in communication exchanges may have a positive impact on the knowledge level of a developer through resolution of his problems or by exposure to new information and hence a positive influence on the code contribution behaviour. This view is also supported by the FLOSSPOLS Developer Survey [28] as shown in Table-2 which reveals that considerable percentage of F/OSS communities members admitted that participation in F/OSS project helped them improve their professional/social skills which are considered to be essential in one's professional career. There are things which one cannot be expected to learn in a classroom. These are the things which can be learnt only in an appropriate type of environment. F/OSS projects provide a platform where one gets an opportunity to learn things like how to articulate an argument, express one's personal opinion, respond to criticism from others, interact with other people etc. This also provides an opportunity to develop leadership qualities which enables one to evaluate the work of others, to motivate people, to settle conflicts within a group, to keep the community moving and to plan work and stick to a work schedule etc. as evident in the FLOSSPOLS survey 2005 shown in table-3.
	Skills learned in FLOSS
	I learned a lot

	To clearly articulate an argument
	27,3

	To express personal opinions
	27,2

	To accept and to respond to criticism from others
	27,0

	To coordinate own work with the work of others
	23,4

	To understand and work with people from different cultures
	22,9

	To interact with other people
	18,6

	To evaluate the work of others
	18,5

	To lead a project or a group of people
	17,4

	To keep a community going
	15,8

	To clearly define and achieve targets
	14,3

	To motivate people
	13,0

	To settle conflicts within a group
	12,4

	To plan work and stick to a work schedule
	7,1

Table-3
(n=1453) Source: FLOSSPOLS Developer Survey 2005
(Multiple responses ordered by shares (%) of respondents
7.3.1 Legal Skills
The emergence of new software development paradigm (component based development) and complexity of the software systems designed these days has made it mandatory for a software engineer to be a law literate. A modern software engineer is supposed to possess the basic awareness of the laws of the land relating to the patent, copyrights, Intellectual Property Rights etc. Therefore the software engineering curriculum must also address this issue by including the appropriate laws etc. while designing the syllabus of the software engineering course. This view is also supported by the results as shown in Table-4 of the survey conducted on the members of the F/OSS communities by [28]. The FLOSSPOLS Developer Survey [28] reveals that quite a significant percentage joined the F/OSS community to learn, know and understand about the patent laws, licenses and copyrights etc. This survey also establishes that participation in F/OSS projects can help a budding software professionals to gain efficiency on the abovementioned subjects. This is further supported by the surveyor [28] of FLOSSPOLS when he says "A broad range of skills are perceived to be better learnt in the F/OSS community than in formal surroundings, which applies especially to the re-usage of code in the technical dimension and software and license issues in the legal dimension".

	Skills learned in FLOSS
	I learned a lot

	To understand the difference between copyrights, patents, and licenses
	51,7

	To understand licenses
	47,0

	To understand copyright law issues
	44,7

	To understand patent law issues
	40,0

	To improve your understanding of liability issues
	23,5

Table-4
(n=1453) Source: FLOSSPOLS Developer Survey 2005
(Multiple responses ordered by shares (%) of respondents)

8. FUTURE DIRECTIONS
Having established the effectiveness and viability of F/OSS projects in software engineering education one may ask questions about the implementation aspects. It is here where more research efforts are required on the part of the software engineering educator community. Some of the techniques discussed in this paper to train the students through F/OSS projects are not enough. More work is required to be done in this direction.
9. CONCLUSIONS
Conclusion of this paper is that in order to meet the challenges of the 21st century posed by the software complexity and globalization factor a modern software engineer has to be equipped not only with technical skills, but communication/social skills, and legal skills also. Therefore, while designing and implementing software engineering courses it should be borne in mind that the contents are such that they are relevant and address the issues that a fresh software engineer is likely to face in the field. This is possible only if there is a close dialogue/interaction between the industry and the academic institution which keeps the institution informed about the current technological or other trends and needs of the industry. The issues can broadly be categorized as resolvable either at the institution level or at the industry level. The focus of this paper is to resolve both issues at the institution level itself while the student is pursuing his/her studies. First part of the solution can be addressed by carefully deciding about the contents of the syllabus and second part e.g. industrial level can be addressed by F/OSS projects. F/OSS projects can play a very crucial and effective role in providing a real life industrial exposure. Therefore the inclusion of F/OSS at different levels has to be an integral part of a software engineering curriculum. Communication skills/social skills are also considered to be as important as the technical skills in a software engineer's skills set. F/OSS projects can also help a budding software engineering professional in refining their non-verbal communication/social skills, legal skills by participating in F/OSS projects. This approach particularly is very useful for the institutions which do not have access to the software industry. F/OSS projects not only help the participants in sharpening their technological skills but their communication/social and legal skills too as is evident from the statement of the surveyor's of the FLOSSPOLS when they say "our hypothesis that the range of skills learnt through participation in the F/OSS community is not limited to pure technological skills is clearly confirmed. Furthermore, it appears that advanced technical skills are learnt in the F/OSS community even by participants with prior technical knowledge".
10.REFERENCES
[1] Sowe, S. K., Karoulis, A., Stamelos, I., Bleris, G. L. (2004). ”Free/Open Source Software Learning Community and Web-Based Technologies”. IEEE Learning Newsletter.

[2] Raymond, S. E. (1999), The Cathedral and the Bazaar. Musing on Linux and Open Source by an Accidental Revolutionary. O’Reilly, Sebastopol, USA.
[3] Lakhani K. R. and von Hippel E. (2003), “How open source software works: “free” user-to-user assistance”. Research policy 32(6), pp. 923-943.
[4] Holtgrewe U. (2004), “Articulating the speed(s) of the Internet: the case of Open Source/Free Software. Time and Society 13 (1):129-146 March 2004.

[5] Sowe, S. K., Stamelos, I., Deligiannis, I. (2006a). “A Framework for Teaching Software Testing using F/OSS Methodology.” In Damiani, E., Fitzerald, B., Scacchi, W., Scott, M., Succi, G., (Eds.), (2006). IFIP International Federation for Information Processing, Open Source Systems, Vol. 203, (Boston Springer), pp/261-266.

[6] Faber, B. D. (2002), “Educational models and open source: resisting the proprietary university.” Proceedings of the 20th Annual international Conference on Computer Documentation, SIGDOC ’02, ACM Press, pp. 31-38.

[7] Carrington, D. and Kim, S. (2003), “Teaching Software Engineering Design with Open Source Software.” 33rd ASEE/IEEE Frontiers in Education Conference, Nov. 5-8, Boulder, CO.
[8] German, M. D. (2005), “Experience teaching a graduate course in Open Source Software Engineering.” Proceedings of the first International Conference on Open Source Systems. Geneva, pp 326-328.

[9] Ozel, B., Cilingir, B., Erkan, K. 2006 (Eds) Towards Open Source Software Adoption. OSS 2006 tOSSad workshop proceedings, Como, Italy, pp79-88.

[10] Barahona, J. M., Tebb, C. and Dimitrova, V. (2005), “Transferring Libre Software development Practices to the Production of Educational Resources: the Edukalibre Project.”

[11] First International Conference on Open Source Systems, Genova, Italy.

[12] Timothy C. Lethbridge. The Relevance of Software Education: A Survey and Some Recommendations.. Annals of Software Engineering, 6:91-110, 1998.

[13] Richard Conn. Developing Software Engineers at the C-130J Software Factory. IEEE Software , 19(5):25-29, 2002.

[14] Ford, G. A Progress Report on the Undergraduate Software Engineering Education, CMU/SEI-94-TR-11, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1994.

[15] Ford, G. and Gibbs, N. E. A Mature Profession of Software Engineering, CMU/SEI-96-TR-004, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

[16] http://sites.computer.org/ccsse/

[17] Meyer, B., “Software Engineering in the Academy”, IEEE Computer, vol. 34, num.5, pp. 28-35, 2001.99999/

[18] Chikofsky, E. J. and Cross, J. H. "Reverse Engineering and Design Recovery: A Taxonomy", IEEE Software, January 1990, pp. 13-17.
[19] Fowler, M. Refactoring - Improving the Design of Existing Code, Addison-Wesley,2004.

[20] Nandigam Jagdeesh et. al. "Learning Software Engineering Principles Using Open Source Software" 38th ASEE/IEEE Frontiers in Education Conference.
[21] Jaccheri Letizia et. al. "On the Importance of Dialogue with Industry about Software Engineering Education", SSEE' 06, Shanghai China.

[22] Sowe, S., Stamelos, I. A Framework for Teaching Software Testing using F/OSS Methodology. In Proceedings of the 2nd International Conference on Open Source Systems 2006, Springer Verlag, 261-266.

[23] Sowe, S., Angelis, L., Stamelos, I. An Empirical Approach To Evaluate Students Participation In Open Source Software Projects. In the Proceedings of IADIS Cognitive and exploratory Learning in the Digital Age (CELDA) 2006, 304-308.
[24] http://metrics.sourceforge.net/

[25] http://eclipse-metrics.sourceforge.net/

[26] S. R Chidamber., C. F. Kemerer, "A Metrics Suite for Object-Oriented Design". IEEE Transactions on Software Engineering", Vol. 20 no.6, June 1994, pp 476-493

[27] Diomidis Spinellis, Open Source and Professional Advancement. IEEE Software, 23(5):70-71, September/October 2006.
[28] Ghosh R. and Glott, "The OpenSource Community as an environment for skills development and employment generation", Proceedings of the European Academy of Management (EURAM) Conference, Munich May 4-7. Also available online in a version prepared for the European Commission.
[29] Borgatti, S. P.,R. Cross 2003. A Relational View of Information Seeking and Learning in Social Networks, Management Science 49(4) 432-445

[30] Brown, J. S. and P. Dugid 1991, Organizational Learning and Communities of Practice: Towards a Unifying View of Working, Learning and Innovation. Organization Science 2(1) 40-57.

[31] Faraj, S. and L. Sproull 2000, Coordinating Expertise in Software Development Teams, Management Science 46(12) 1554-1568.

[32] Graydon, J., M. Griffin 1996. Specificity and Variability of Practice with Young Children. Perceptual and Motor Skills 83 83-88.

[33] Grannovetter, M. 1973 The Strength of Weak Ties, American Journal of Sociology 78 1360-1380.

[34] Kraut R. E., L.A. Streeter 1995. Coordinating software development. Communications of ACM 38(3) 69-81.

[35] Schilling, M. A., P. Vidal, R. E. Polyhart, A. Marangoni, 2003. Learning by doing something else: Variations, Relatedness and the Learning Curve. Management Science 49(1) 39-56.

PAGE
ISSN: 0975 – 6701| NOV 10 TO OCT 11 | Volume 1, Issue 2

Page 16

